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Particle Motion In Bell-Szekeres Space-Time 1 
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We solve the geodesics equation for a charged particle in Bell-Szekeres space- 
time. In the same geometry we give the test particle solution of Dirac's equation. 

1. INTRODUCTION 

It is a well-known fact of classical dectrodynamics in flat space that 
electromagnetic (e.m.) waves do not scatter, whereas in general relativity the 
nonlinear character is manifested by scattering of e.m. waves in analogy 
with photon-photon scattering of quantum electrodynamics. The space-time 
arising from collisions of shock e.m. waves was discovered by Bell and 
Szekeres (BS) (1974). This nonnull e.m. solution to the Einstein-Maxwell 
equations is characterized by nonsingular behavior in contrast to the 
Einstein solution resulting from the colliding gravitational plane waves 
(Szekeres, 1972; Halil, 1979). Another aspect of the BS solution is that off 
the wave front it is conformally flat, therefore by a theorem of Tariq and 
Tupper (1974) it must be transformable to a Bertotti-Robinson (BR) 
(Bertotti, 1959; Robinson, 1959) solution. This latter solution of Einstein- 
Maxwell equations is known to represent an e.m. radiation filled universe 
and is connected with the Reissner-NordstriSm "throat" which is defined 
(Misner et al., 1973) for the case of charge (Q)--mass (M) and where 
IQ-rI<<Q. 

To our knowledge the solution of geodesics equations in BS geometry is 
absent and for BR is not without ambiguities (Lovelock, 1967) in the 
literature. From the cosmological point of view this problem is interesting 
since e.m. shocks produced by the astrophysical objects interact to develop 
BS regions. The only nonvanishing components of the e.m. field tensor 
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admitted by the BS solution consist of E x =const and By =const. It is 
known from the motion of charged particles in conductors that in the 
presence of a constant external magnetic field a transverse potential arises 
(Hall effect). For the present case we can identify the Hall potential 
similarly and observe that the electric fields associated with this potential 
are collinear with E x but there is no chance that the two electric fields 
compensate each others. 

We present the solution of geodesics equations in BS geometry and 
integrate the separable Hamilton-Jacobi functional completely. Since elec- 
tron-positron pair creation is a frequently occurring phenomenon around 
pulsars, we investigate the solution of a Dirac particle in BS background. 
For this purpose we employ Chandrasekhar's (1976) treatment of Dirac's 
equation in the test particle approximation. 

2. GEODESICS IN BS SPACE-TIME 

Let us consider the head-on collision of shock e.m. waves with constant 
profile and characterized by the null-tetrad scalars, r = F ~  l~m~ = k l / 2 b =  
const and r = F ~  ~ 'n~ = k l / 2 a = c ~  respectively. Here k = G / 8 c  4 (G= 
Newton's constant, c=speed of light), a and b are real constants with our 
choice that ab>O. For the detailed description of e.m. collision problem we 
refer to the article by Bell and Szekeres (1974). 

If the null coordinates u and v represent the directions of propagations 
for e.m. shocks, we define new coordinates by 

f; = au + bv 

,i = au--  bv (1) 

which will prove to be suitable in the sequel. The coordinate lines ~ = const 
Ol=const) represent families of elliptical (hyperbolic) curves. In these 
coordinates the BS solution is 

ds 2=  -~-~ ( d ~ l  2dTi2)_cos2Tidx2cos2~dy 2 (2) 

while the e.m. vector potential has a single surviving component, 

A x - - A  = ( 2 / k ) l / 2 s i n ~ l  (3) 

Note that the factor 1 / 2 a b  in the line element is not significant but for 
reasons of correspondence with the null coordinates we shall keep it. The 
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Weyl component of the curvature tensor takes divergent Values for ~=~r and 
7/=0, but since such singularities correspond to the location of sources (i.e., 
wave front), they are not ambiguous. The geodesics equation reads 

d2x a dx ~ dx v _~ [ dx t~ +rL a (4) 

where e is the charge and s is an affine parameter defined by s = (proper 
time)/(mass). From the field theoretical approach the same geodesics 
equations can be obtained from the Lagrangian density 

1 ( 2 )  '/2 e=Tgg( 2-  )-cos n 2-cos2 y +Ze (5) 

where the dot denotes d/ds. Since x and y are cyclic the corresponding 
equations yield the first integrals 

p COS2~ = --fl=const (6) 

2 cos2y - e (2/k)1/2 sin ~ = - a = const (7) 

The remaining two equations can be written in the following form: 

"~+abK,~ =0  (8) 

i~-abK,n =0  (9) 

where K represents the effective potential given by 

_f12 [a--e(2/k)L/Zsinrt] 2 (10) 
K-- cos2 ~ :- cos27/ 

and is already separated in this coordinate system. The form of the effective 
potential suggests by comparison with the Newtonian potential a law 
"inverse cosine square" of attraction. By direct inspection of (8) and (9) one 
deduces a third constant of motion expressed by 

(1/2ab)(~2 _~2 ) + K =  y = const (11) 

which can be identified as the total energy of the system. Integration of (8) 
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and (9) yields 

1 �9 2 a b f l 2  
~ - cos2 ~ + A  (12)  

1 2 ab[a-e(2/k)l/2sinT/] z 
(13) 

-~7} = cos2 ~ 

where the constants of integration are constrained by (11), 

A-B=aby (14) 

All the foregoing expressions can be integrated and we give the results 

I sin-'{ (1 + 1/q 2 )'/2sin[(21a'l)'/2s+c']} 
~ = [  sin-'{ (1/p)sinh[(Zla'l)l/Zs+c']} 

for A = [a' I (15) 
for a = - l a'l 

where q2 = ta,l/abfl2 < 1, p2 =q2/(  1 _q2 )>  1 and c' is an integration con- 
stant. In order to provide the case A =0 we must choose c '=0:  

~?=sin-l( (-A )l/2sin[(-2c)l/2s+d'] - ~---C'C (16) 

where 

2abe 2 ) 
A = - 4 B  B+ k aba2 ' 2abe 2 

b'= 2aba(2/k )1/2 and d' is an integration constant 

x=(2ab )-l/2tan-l{(ab )-1/2 {Bc~ sin ~/- (2/k)'/2esin ~ / ] 2 ) 1 / 2  e }l/2 ] 

(17) 

y-_ l (2ab )-X/2, "cosh- 1 [ 1 + 2/(1 +q2 ) tan2~], 

cosh-' [1 + 2(1 +p2 ) tan2~], 
a=la' I (18) 
A=-la'l  

where p, q are given above. In the x, y integrations we neglected the 
unimportant additive constants. 
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In order to obtain null geodesics we set 7=0  or A =B in the above 
notation. We must also take e=O since no charged particle moves on the 
null geodesics. 

The covariant component of the force is given by 

f~=eF~( dx~-ds- ) 

whose x component in explicit form is 

fx:--e(iEx--2By) 
where Ex:kl/2(a-b), and By=k-l/2(a+b). The second term in the 
parentheses for fx can be identified as the Hall electric field, where z is to be 
substituted from the geodesics. Let us note that, 21/22ab~ = ( a -  b ) ~ -  (a + 
b)~ and 21/22abi=(a + b)~-(a-b)~, so that in order to get f~ =0 we 
must have (a + b)2 = ( a  - b)i or equivalently ab~ =0. Since a ~ 0 4  = b and 
~) v~0 by (13), we conclude that the Hall potential does not compensate the 
effect of the already existing electric potential due to E~. 

3. HAMILTON-JACOBI EQUATION 

We will give a complete integral of the Hamilton-Jacobi equation 

g ~ ( ~ - e ~ )  ( ~ -eA~ ) = -+m E (19) 

where g~'~ correspond to the BS line dement (2). This is equivalent to 

2ab(S~_S~)_ 1 [ 2 ],/a ]2 1,2 _ 
cos2 ~ _/~--e ( ~  ] sin ~/] cos2 ~ •  2 (20) 

where/~ and ~, are constants associated with the Killing coordinates x and y. 
Further separation of S is assumed in the form 

S=X(~)+e(~)+~x+vy (21) 

After separating ~ and ~/by the fourth constant l we obtain the following 
ordinary differential equations: 

2ab -~ cos2 ~ ~- m 2 = l (22) 

I /2  ]2 = 
2ab(~)2+coT~[l~--e( 2 ) sin ~/] l (23) 
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We readily observe from (23) that the fourth constant l is a positive definite 
quantity. The solutions for these ordinary differential equations are given as 
follows: 

2ab ) ' /2X(~)= -Ps in - ' (Ps in  ~) 
(p2 +l+m 2 

+ 2(l_pX)l/21og sin*-I (1--p2)l/X(1--p2sin2~)l/2___L+l+p2sin_________~ ] 
sin~+ 1 (l_p2),/2(l_e2sin2 ~)'/2+ l_p2sin~ ] 

(24) 

-(2ab )'/2E( Ti ) 

---2 --l[Ix+e(2)I/2]sin-l( '-1~2-t~e(2/k)'/2+sin*l[R+lze(2/k)'/2] N(sinr/+ 1) } 

21[tx--e(2)'/2]sin-'{ l-lz25clze(2/k)l/2+sinTl[-R+lze(2/k)'/2]~--f)) } 

where 

2e 2 =ll/2(R_#2)1/2 R=I+--~ and N=ll/2(l-#2+~) 1/2 

4. DIRAC'S EQUATION IN BS SPACE-TIME 

Dirac's equation in Newman-Penrose (Newman and Penrose, 1962)spin 
coefficient formalism is given by the coupled equations (Chandrasekhar, 
1976) 

( D+e-p )F, + (8+~r-  a )F  2 =ilzeG1 
(A +/~--2r 2 + (8+fl-'r)F, =i~eG 2 

( D + E - p ) G  2 -- ( ~ + ~ - - ~ ) G |  : i l~eF 2 

(A +/~-'7 )Gl -- (g+/~-- ~ )G2 =it~,F, (26) 
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where D = l~a~, A = n~0~ and ~ = m~a, are the directional derivatives while 
a,/3, 7,.. .  denote the spin coefficients. The complex functions F1, F:, Gl, 
and G= are the spinor components of the Dirac's wave function and 21/2/~ e 
denotes the mass of the Dirac particle. The generic form of the BS metric 
can be taken as 

ds 2 = 2 d u d v - e  -U( eVdx 2 + e -  Vdy2 ) (27) 

let us choose the null tetrad by the set 

1~ = S f ,  n~ = S f  

rn~ = 2-1/2e-U/Z( eV/281, 2 n t- ie-V/2~l,3 ) (28) 

In this tetrad the nonvanishing spin coefficients are 

x= Vu, o=�89 
o= - �89  I, = - � 8 9  u (29) 

We shall assume in the following a dependence on the Killing coordinates 
given by e i("x+"y), #=const  (real), v=const (real). Substituting all these 
expressions into (26) and scaling the spinors by 

e -V/2F,. =fi, e -U/2G i =gi, i= 1,2 

we obtain in the ~, 7/ coordinates the following system of equations: 

v i/* ) 
b ( ~ - 0 ~ ) f l + 2  -1/2 c-~s~-t-- cos t  f2=iP~egl 

COS~ cosT/ gl =-it~ef2 

a(O,+On)f2+2-1/2(  v ill ) 
cos~ cost/ fl=ilXeg2 

+ g: = i # e f  1 (30) cos 7/ 

We observe from these equations that the choices f= =(b/a)l /2f l  and 
g2 =(a/b)l /2gl  decouple at the second order in the following form: 

PYl =q/l 

Qgl = --Figl (31) 
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where 

Q=O~-Onn 2ab COS2~ + ~COS2~/ + --ab 

and 

q=_ 2ab, 'J2( sin'- sin  ) 
COS2~ -t" l~ COS2----- ~ 

The separable ~, ,/dependences of the solutions are given by the expressions 

"II'__~ 71" 77) -ilx(2ab,-'/2 

gl~g(rl)tan( 4_~ )-v(2ab)-l/2tan(4__~ ) 'tz(2ab)-'/2 

where the function g(7/) is required to satisfy the ordinary differential 
equation 

(1 - x 2  )gxx + ( a, - x  )gx +flag=O (32) 

with x =sinT/, a 1 = -2ilx(2ab) -1/2, and flz = -I~e2/ab. In case we have a 
massless particle then fll =0, which implies g =const. Such a differential 
equation (32) is the usual price one has to pay in incorporating mass into 
the problem. The final solution can be expressed in the following form: 

F 2 =(b/a)l/2Fl,G2 =(a/b)l/2G1 and where Al, B t are arbitrary complex 
constants. Unless ~ and v are specified the location of singularities (if any) 
cannot be observed, but we can definitely choose regions where the fore- 
going spinor components are regular. 
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